Inhibition of stationary phase respiration impairs persister formation in E. coli
نویسندگان
چکیده
Bacterial persisters are rare phenotypic variants that temporarily tolerate high antibiotic concentrations. Persisters have been hypothesized to underlie the recalcitrance of biofilm infections, and strategies to eliminate these cells have the potential to improve treatment outcomes for many hospital-treated infections. Here we investigate the role of stationary phase metabolism in generation of type I persisters in Escherichia coli, which are those that are formed by passage through stationary phase. We find that persisters are unlikely to derive from bacteria with low redox activity, and that inhibition of respiration during stationary phase reduces persister levels by up to ∼1,000-fold. Loss of stationary phase respiratory activity prevents digestion of endogenous proteins and RNA, which yields bacteria that are more capable of translation, replication and concomitantly cell death when exposed to antibiotics. These findings establish bacterial respiration as a prime target for reducing the number of persisters formed in nutrient-depleted, non-growing populations.
منابع مشابه
The Formation of Persister Cells in Stationary-Phase Cultures of Escherichia Coli Is Associated with the Aggregation of Endogenous Proteins
Persister cells (persisters) are transiently tolerant to antibiotics and usually constitute a small part of bacterial populations. Persisters remain dormant but are able to re-grow after antibiotic treatment. In this study we found that the frequency of persisters correlated to the level of protein aggregates accumulated in E. coli stationary-phase cultures. When 3-(N-morpholino) propanesulfoni...
متن کاملGenetic Basis of Persister Tolerance to Aminoglycosides in Escherichia coli
UNLABELLED Persisters are dormant variants that form a subpopulation of drug-tolerant cells largely responsible for the recalcitrance of chronic infections. However, our understanding of the genetic basis of antibiotic tolerance remains incomplete. In this study, we applied transposon sequencing (Tn-Seq) to systematically investigate the mechanism of aminoglycoside tolerance in Escherichia coli...
متن کاملAge of inoculum strongly influences persister frequency and can mask effects of mutations implicated in altered persistence.
The majority of cells transferred from stationary-phase culture into fresh medium resume growth quickly, while a few remain in a nongrowing state for longer. These temporarily nonproliferating bacteria are tolerant of several bactericidal antibiotics and constitute a main source of persisters. Several genes have been shown to influence the frequency of persisters in Escherichia coli, although t...
متن کاملRelationship of cell surface hydrophobicity with biofilm formation and growth rate: A study on Pseudomonas aeruginosa, Staphylococcus aureus, and Escherichia coli
Objective(s): This study was designed to determine the relationship of Pseudomonas aeruginosa, Staphylococcus aureus, and Escherichia coli isolates in multispecies biofilms and their individual phenotypic characters in biofilm consortia. Materials and Methods: The subject isolates were recovered from different food samples and identified on the basis of growth on differential and selective med...
متن کاملToxin YafQ increases persister cell formation by reducing indole signalling.
Persister cells survive antibiotic and other environmental stresses by slowing metabolism. Since toxins of toxin/antitoxin (TA) systems have been postulated to be responsible for persister cell formation, we investigated the influence of toxin YafQ of the YafQ/DinJ Escherichia coli TA system on persister cell formation. Under stress, YafQ alters metabolism by cleaving transcripts with in-frame ...
متن کامل